Full Content is available to subscribers

Subscribe/Learn More  >

Empirical Dynamic Modeling of Friction Stir Welding Processes

[+] Author Affiliations
Xin Zhao, Prabhanjana Kalya, Robert G. Landers, K. Krishnamurthy

University of Missouri - Rolla, Rolla, MO

Paper No. MSEC2007-31047, pp. 27-36; 10 pages
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME


Current Friction Stir Welding (FSW) process modeling research is concerned with the detailed analysis of local effects such as material flow, heat generation, etc. These detailed thermo-mechanical models are typically solved using finite element or finite difference schemes and require substantial computational effort to determine temperature, forces, etc. at a single point in time. Dynamic models describing the total forces acting on the tool throughout the entire welding process are required for the design of feedback control strategies and improved process planning and analysis. In this paper, empirical models relating the process parameters (i.e., plunge depth, traverse rate, and rotation speed) to the process variables (i.e., axial, traverse, and lateral forces) are developed to understand their dynamic relationship. First, the steady-state relationship between the process parameters and variables is constructed, and the relative importance of each process parameter on each process variable is determined. Next, the dynamic process response characteristics are determined using Recursive Least-Squares. The results indicate that the steady-state relationship between the process parameters and variables is well characterized by a nonlinear power relationship, and the dynamic responses are well characterized by low-order linear equations. Experiments are conducted that validate the developed FSW dynamic models.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In