0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Feed Effect in Machining Chatter Analysis

[+] Author Affiliations
Robert G. Landers

University of Missouri - Rolla, Rolla, MO

A. Galip Ulsoy

University of Michigan, Ann Arbor, MI

Paper No. MSEC2007-31045, pp. 17-26; 10 pages
doi:10.1115/MSEC2007-31045
From:
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • ASME 2007 International Manufacturing Science and Engineering Conference
  • Atlanta, Georgia, USA, October 15–18, 2007
  • Conference Sponsors: Manufacturing Division
  • ISBN: 0-7918-4290-8 | eISBN: 0-7918-3809-9
  • Copyright © 2007 by ASME

abstract

Regenerative chatter is a major limitation to the productivity and quality of machining operations due to the excessive rate of tool wear and scrap parts which are produced. Machining chatter analysis techniques examine the stability of the closed-loop model (force process and machine tool-part structure) of the machining operation to determine the stable process parameter space. Almost all chatter analysis techniques assume a linear force process and develop stability lobe diagrams (i.e., plots of the stable and unstable regions in the process parameter space) for a specific feed. It is well known that machining force processes inherently contain a nonlinear relationship between the force and the feed, which is typically described by a power law. In this paper, the linear chatter analysis technique developed by Budak and Altintas is extended to account for the force-feed nonlinearity. The analysis provides insight into the effect feed has on chatter in machining operations. Also, by directly including the force-feed nonlinearity in the chatter analysis, the need to calibrate the force process model at different feeds is alleviated. The analysis is developed for turning and face milling operations and is validated via time domain simulations for both operations and by experiments for a face milling operation. The analyses show excellent agreement with both the time domain simulations and the experiments. Further, several end milling experiments were conducted that illustrate the nonlinear effect feed has on chatter in machining operations.

Copyright © 2007 by ASME
Topics: Chatter

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In