0

Dynamic Analysis of the Joined-Wing Configuration in High-Altitude Long-Endurance Aircraft Using Fluid-Structure Interaction Model PUBLIC ACCESS

[+] Author Affiliations
Prabu Ganesh Ravindren, Kirti Ghia, Urmila Ghia

University of Cincinnati, Cincinnati, OH

Paper No. FEDSM2007-37683, pp. 1467; 1 page
doi:10.1115/FEDSM2007-37683
From:
  • ASME/JSME 2007 5th Joint Fluids Engineering Conference
  • Volume 2: Fora, Parts A and B
  • San Diego, California, USA, July 30–August 2, 2007
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4289-4 | eISBN: 0-7918-3805-6
  • Copyright © 2007 by ASME

abstract

Recent studies of the joined-wing configuration of the High Altitude Long Endurance (HALE) aircraft have been performed by analyzing the aerodynamic and structural behaviors separately. In the present work, a fluid-structure interaction (FSI) analysis is performed, where the fluid pressure on the wing, and the corresponding non-linear structural deformation, are analyzed simultaneously using a finite-element matrix which couples both fluid and structural solution vectors. An unsteady, viscous flow past the high-aspect ratio wing causes it to undergo large deflections, thus changing the domain shape at each time step. The finite element software ANSYS 11.0 is used for the structural analysis and CFX 11.0 is used for the fluid analysis. The structural mesh of the semi-monocoque joined-wing consists of finite elements to model the skin panel, ribs and spars. Appropriate mass and stress distributions are applied across the joined-wing structure [Kaloyanova et al. (2005)], which has been optimized in order to reduce global and local buckling. The fluid region is meshed with very high mesh density at the fluid-structure interface and where flow separation is predicted across the joint of the wing. The FSI module uses a sequentially-coupled finite element equation, where the main coupling matrix utilizes the direction of the normal vector defined for each pair of coincident fluid and structural element faces at the interface [ANSYS 11.0 Documentation]. The k-omega turbulence model captures the fine-scale turbulence effects in the flow. An angle of attack of 12°, at a Mach number of 0.6 [Rangarajan et al. (2003)], is used in the simulation. A 1-way FSI analysis has been performed to verify the proper transfer of loads across the fluid-structure interface. The CFX pressure results on the wing were transferred across the comparatively coarser mesh on the structural surface. A maximum deflection of 16 ft is found at the wing tip with a calculated lift coefficient of 1.35. The results have been compared with the previous study and have proven to be highly accurate. This will be taken as the first step for the 2-way simulation. The effect of a coupled 2-way FSI analysis on the HALE aircraft joined wing configuration will be shown. The structural deformation history will be presented, showing the displacement of the joined-wing, along the wing span over a period of aerodynamic loading. The fluid-structure interface meshing and the convergence at each time step, based on the quantities transferred across the interface will also be discussed.

Copyright © 2007 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In