0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Analysis of Residual Stresses in TT-Welded Joint of a Fixed Jacket Platform

[+] Author Affiliations
Kh. Rostami, A. R. M. Gharabaghi, M. R. Chenaghlou, A. Arablouei

Sahand University of Technology, Tabriz, Iran

Paper No. OMAE2006-92454, pp. 485-492; 8 pages
doi:10.1115/OMAE2006-92454
From:
  • 25th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Wind Energy; Ocean Research Technology; LNG Specialty Symposium
  • Hamburg, Germany, June 4–9, 2006
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-4746-2 | eISBN: 0-7918-3777-7
  • Copyright © 2006 by ASME

abstract

Welded steel tubular joints are the kind of connections used extensively in the construction of fixed jacket platforms. The welding process creates considerable tensile residual stresses near the toe of TT-joint due to the rapid cooling and contraction of final welding layers. Welding produces thermal stresses that cause structural distortions, which influence the buckling strength of the structure. In this study thermal elasto-plastic analysis is carried out using ANSYS finite element techniques to evaluate the thermo-mechanical behavior and the residual stresses of the TT-joint. Moreover, the technique of element birth and death is employed to simulate the weld filler variation with time in TT-joint. The results show the considerable tensile residual stress near the weld toe that it may cause crack initiation in this region and threats the fatigue life of joint.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In