Full Content is available to subscribers

Subscribe/Learn More  >

Probabilistic Assessment of Fretting Wear in Steam Generator Tubes Under Flow Induced Vibrations

[+] Author Affiliations
Greg D. Morandin, Richard G. Sauvé

Atomic Energy of Canada, Ltd., Mississauga, Ontario, Canada

Paper No. PVP2003-2081, pp. 117-125; 9 pages
  • ASME 2003 Pressure Vessels and Piping Conference
  • Flow-Induced Vibration
  • Cleveland, Ohio, USA, July 20–24, 2003
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4156-1
  • Copyright © 2003 by ASME


Successful life management of steam generators requires an ongoing operational assessment plan to monitor and address all potential degradation mechanisms. A degradation mechanism of concern is tube fretting as a result of flow-induced vibration. Flow induced vibration predictive methods routinely used for design purposes are based on deterministic nonlinear structural analysis techniques. In previous work, the authors have proposed the application of probabilistic techniques to better understand and assess the risk associated with operating power generating stations that have aging re-circulating steam generators. Probabilistic methods are better suited to address the variability of the parameters in operating steam generators, e.g., flow regime, support clearances, manufacturing tolerances, tube to support interactions, and material properties. In this work, an application of a Monte Carlo simulation to predict the propensity for fretting wear in an operating re-circulation steam generator is described. Tube wear damage is evaluated under steady-state conditions using two wear damage correlation models based on the tube-to-support impact force time histories and work rates obtained from nonlinear flow induced vibration analyses. Review of the tube motion in the supports and the impact/sliding criterion shows that significant tube damage at the U-bend supports is a result of impact wear. The results of this work provide the upper bound predictions of wear damage in the steam generators. The EPRI wear correlations for sliding wear and impact wear indicate good agreement with the observed damage and, given the preponderance of wear sites subject to impact, should form the basis of future predictions.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In