0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics of a Cylinder Wake Under Controlled Excitation

[+] Author Affiliations
Njuki W. Mureithi, Syuki Goda

Kobe University, Kobe, Japan

Tomomichi Nakamura

Mitsubishi Heavy Industries, Ltd., Takasago, Japan

Paper No. PVP2003-2072, pp. 31-40; 10 pages
doi:10.1115/PVP2003-2072
From:
  • ASME 2003 Pressure Vessels and Piping Conference
  • Flow-Induced Vibration
  • Cleveland, Ohio, USA, July 20–24, 2003
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4156-1
  • Copyright © 2003 by ASME

abstract

This paper presents some results of experimental tests as well as a group theoretic analysis of a 2D cylinder wake under forced excitation. The response of the Karman wake (K mode) to external perturbations is studied. Reflection-symmetric (S mode) perturbations and asymmetric (K1 mode) perturbations are considered. The perturbations are generated by mechanically oscillating the test cylinder. Tests were done in a small wind tunnel. Depending on the excitation to Karman shedding frequency ratio, mode locked states, in the form of spatio-temporally fixed patterns, could be observed. Harmonic asymmetric (mode K1=K ) forcing at the Karman frequency strongly enhanced the Karman mode. Superharmonic forcing (with mode K1 ≠ K ) had little effect on the Karman mode K. However, a detuning effect was observed. On the other hand, subharmonic (1/2, 1/3) K1 mode forcing significantly affected the K mode, with strong response at K1 mode harmonics. Subharmonic S mode excitation had a damping effect on the K mode. On the other hand harmonic and superharmonic forcing triggered a period-doubling instability, destroying the original K mode. Using a group theoretic approach, the general amplitude equations governing the interaction of the S/K1 modes with the K mode have been derived. A qualitative analysis of the equations helps explains some of the experimental results. For K1/K mode interactions, the symmetrical ‘compatibility’, via common subgroups, explains the strong resonances observed experimentally for 1/1 and 1/3 frequency ratios. For a frequency ratio 1/2, it is shown that K1 and K mode symmetries are incompatible; the two modes do not have a common symmetry subgroup. Consequently, traveling wave solutions, induced by total symmetry breaking, rather than standard steady state modes are expected to be more likely to occur. For S/K mode interaction, an earlier result is reiterated; thus, the Karman mode is shown, theoretically, to be destroyed via a period-doubling instability. This effect occurs for S mode frequencies as high as 3 times the Karman frequency.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In