0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Time and Frequency Domain Analysis With Full Scale Data for the Horn Mountain Spar During Hurricane Isidore

[+] Author Affiliations
Arcandra Tahar

FloaTEC LLC, Houston, TX

John Halkyard

Technip USA, Houston, TX

Mehernosh Irani

BP Exploration & Production, Inc., Houston, TX

Paper No. OMAE2006-92137, pp. 105-113; 9 pages
doi:10.1115/OMAE2006-92137
From:
  • 25th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 1: Offshore Technology; Offshore Wind Energy; Ocean Research Technology; LNG Specialty Symposium
  • Hamburg, Germany, June 4–9, 2006
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-4746-2 | eISBN: 0-7918-3777-7
  • Copyright © 2006 by ASME

abstract

The Horn Mountain Spar is located in 1,654 m of water about 135 km from Venice, Louisiana in the Gulf of Mexico. The facility was instrumented extensively to measure key spar and riser response parameters (Edwards et. al. 2003). Halkyard et. al. (2004) and Tahar et. al. (2005) have compared measured spar responses such as motion and mooring line tensions with numerical predictions. This paper extends the work done on comparison of the full scale data during hurricane Isidore. All previous numerical simulations were based on a time domain analysis procedure. One concern related to this method is that it is computationally intensive and time consuming. In the initial stages of a project, a frequency domain solution may be an effective tool compared with a fully coupled time domain analysis. The present paper compares results of time domain and frequency domain simulations with field measurements. Particular attention has been placed on the importance of the phase relationship between motion and excitation force. In the time domain analysis, nonlinear drag forces are applied at the instantaneous position. Whereas in the frequency domain analysis, nonlinear drag forces are stochastically linearized and solutions are obtained by an iterative procedure. The time domain analysis has better agreement with the field data compared to the frequency domain. Overall, however, the frequency domain method is still promising for a quick and approximate estimation of relevant statistics. With advantages in terms of CPU time, the frequency domain method can be recommended as a tool in pre-front end engineering design or in a phase where an iterative nature of design of an offshore structure takes place.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In