0

Full Content is available to subscribers

Subscribe/Learn More  >

Usage of Axial and Rotating Magnetic Field to Process Ge0.98Si0.02 Crystal by the Traveling Heater Method

[+] Author Affiliations
T. J. Jaber, M. Z. Saghir

Ryerson University, Toronto, ON, Canada

Paper No. FEDSM2007-37390, pp. 1745-1748; 4 pages
doi:10.1115/FEDSM2007-37390
From:
  • ASME/JSME 2007 5th Joint Fluids Engineering Conference
  • Volume 1: Symposia, Parts A and B
  • San Diego, California, USA, July 30–August 2, 2007
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4288-6 | eISBN: 0-7918-3805-6
  • Copyright © 2007 by ASME

abstract

A three-dimensional numerical simulation to study the effect of magnetic field on the fluid flow, heat and mass transfer is investigated. By applying axial and rotating magnetic field (RMF), an attempt was made to suppress the buoyancy convection in the Ge0.98 Si0.02 solution zone in order to get homogeneity with flat growth interface. It was found that the intensity of the flow at the centre of the crucible decreased at a faster rate compared to the flow near the walls when increasing axial magnetic field intensity. This behaviour created a stable and uniform silicon distribution in the horizontal plane near the growth interface. Different magnetic field intensities for different rotational speeds (2, 7 and 10 rpm) were examined. The results showed that the RMF has a marked effect on the silicon concentration, changing it from convex to nearly flat when the magnetic field intensity increased.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In