Full Content is available to subscribers

Subscribe/Learn More  >

Multiple Plastic Strain Cycles Effects on Structural Reliability Analysis of Pipes

[+] Author Affiliations
Hugo A. Ernst, Diego N. Passarella, Richard E. Bravo

Tenaris Group, Campana, Argentina

Federico Daguerre

Tenaris Group TAMSA, Veracruz, Mexico

Paper No. IPC2006-10516, pp. 1097-1105; 9 pages
  • 2006 International Pipeline Conference
  • Volume 3: Materials and Joining; Pipeline Automation and Measurement; Risk and Reliability, Parts A and B
  • Calgary, Alberta, Canada, September 25–29, 2006
  • Conference Sponsors: Pipeline Division
  • ISBN: 0-7918-4263-0
  • Copyright © 2006 by ASME


The reeling process is one of the most important methods for offshore installations of linepipes. Pipe segments are welded onshore and subsequently bent over a cylindrical rigid surface (reel) in a laying vessel. In a standard cycle the welded pipes are reeled onto a drum, reeled off, aligned and straightened. High plastic deformation is introduced in the pipe. Due to the high loading condition, the high costs of operations and the severe failure consequences, it is necessary to guarantee the integrity of the components during the process. Conventional defect assessment procedures are not explicitly developed for situations with large cyclic plastic strains. In previous work, a fracture mechanics based methodology was developed to obtain an appropriate specific method to assess the structural reliability of reeled pipes. A description of the material resistance toughness and the crack driving force evolution through strain cycles was proposed. This methodology was experimentally verified. In order to expand this model, in this work the case where several reeling cycles are applied is considered. In addition to the fracture mechanics methodology previously developed, a fatigue crack growth (FCG) formulation controlled by ΔJ parameter was developed. This formulation accounts for the crack growth produced during subsequent reeling cycles. Several fatigue laws and methods to calculate ΔJ were evaluated. An experimental program was carried out. Girth welded joints from two different seamless steel pipes were analyzed. Monotonic and cyclic fracture mechanics tests were performed using single edge notch tension (SENT) specimens. Cyclic tests were used to determine experimentally the cyclic crack growth. Experimental measurements were compared to predicted fatigue crack growths for different ΔJ calculation methods and fatigue laws. Comparison between theoretical and experimental results led to the selection of the most realistic fatigue law. A methodology to assess the reliability of pipes during multiple reeling cycles, based on fracture and elastic-plastic fatigue crack growth, was developed. A particular case of interest was presented, tolerable defect sizes were determined for different number of applied reeling cycles. The proposed methodology seems to be an accurate method to assess cases where multiple plastic cycles are taken into account.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In