Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Geometry, Temperature, and Test Procedure on Reported Failure Strains From Simulated Wide Plate Tests

[+] Author Affiliations
Yong-Yi Wang, Ming Liu, Yaoshan Chen

Engineering Mechanics Corporation of Columbus, Columbus, OH

David Horsley

TransCanada PipeLines Limited, Calgary, AB, Canada

Paper No. IPC2006-10497, pp. 593-601; 9 pages
  • 2006 International Pipeline Conference
  • Volume 3: Materials and Joining; Pipeline Automation and Measurement; Risk and Reliability, Parts A and B
  • Calgary, Alberta, Canada, September 25–29, 2006
  • Conference Sponsors: Pipeline Division
  • ISBN: 0-7918-4263-0
  • Copyright © 2006 by ASME


Wide plate test is a valuable tool in the assessment of pipeline girth weld integrity. It has been used for welding procedure qualification and for the validation of theoretically based defect assessment procedures. Although the general form of the test has remained largely unchanged over the years, the size of the test specimen, strain measurement, and test procedure, has had some variations. The influence of these variables has not been adequately examined. While this might be acceptable for tests targeted for stress-based design in which a general pass/no-pass answer is desired, the requirements for data accuracy and consistency for strain-based design are much higher. Understanding the variability of the test data is critical for high strain applications. This paper examines the effects of test geometry, mainly the length to width ratio, on the reported failure strains, assuming material’s failure process remains the same. The influence of different strain measdurement procedures, such as the location and gage length of LVDTs (Linear Variable Displacement Transducer), is assessed for different materials and weld strength mismatch levels. The other consideration is the influence of temperature fields on the cold test data. The postulated cold tests use either local cooling at the location of the weld defect or uniform cooling. In the case of local cooling, the gage length of the LVDTs covers materials of different temperatures. Consequently the reported failure strains are affected by the distribution of the temperature fields. The effects of the temperature fields on the reported tensile failure strains are examined.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In