0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Grade on Ductile Fracture Arrest Criteria for Gas Pipelines

[+] Author Affiliations
G. Wilkowski, D. Rudland, H. Xu

Engineering Mechanics Corporation of Columbus, Columbus, OH

N. Sanderson

BP Exploration

Paper No. IPC2006-10350, pp. 369-384; 16 pages
doi:10.1115/IPC2006-10350
From:
  • 2006 International Pipeline Conference
  • Volume 3: Materials and Joining; Pipeline Automation and Measurement; Risk and Reliability, Parts A and B
  • Calgary, Alberta, Canada, September 25–29, 2006
  • Conference Sponsors: Pipeline Division
  • ISBN: 0-7918-4263-0
  • Copyright © 2006 by ASME

abstract

Several different criteria have been proposed over the years to predict the minimum toughness for arrest of an axial propagating crack for natural gas pipelines. The initial ones were empirically based. The Battelle Two-Curve Method (TCM) was subsequently developed and was somewhat less empirical. The TCM is still used frequently today. Nevertheless, all of these criteria use the Charpy energy as a measure of the material’s ductile fracture resistance. As higher-grade steels have been developed, it has been found from full-scale tests that a multiplier was needed on the predicted minimum Charpy arrest energy value as calculated from the original TCM. Several researchers have also suggested that a correction factor was needed on the Charpy energy as the Charpy energy value increased above a certain level. This was a nonlinear correction factor that essentially showed that as the Charpy energy value surpassed a certain level, the effective energy for ductile fracture arrest is less than the total energy from the Charpy test. This paper presents background information on several of these toughness correction factors, as well as statistical analyses of full-scale pipe burst tests on 186 lengths of X60 to X100 grade pipes using these methods. The results show the effects of grade level on not only the original TCM predictions, but also several other modifications for high Charpy energy levels. Additionally, a method has also been developed where the DWTT energy was used instead of the Charpy energy in the Battelle TCM. The results of the statistical analyses showed that all the Charpy-energy-based criteria required an increasing correction factor as the grade level increased. The one DWTT energy criterion was statistically constant with grade level. This difference between the Charpy criteria and the DWTT criterion was traced back to a changing relationship between the Charpy and DWTT energy values as the grade of the steel increases.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In