Full Content is available to subscribers

Subscribe/Learn More  >

Ductile Fracture Control for High Strength Steel Pipelines

[+] Author Affiliations
Andrea Fonzo, Andrea Meleddu

Centro Sviluppo Materiali S.p.A., Pula, CA, Italy

Giuseppe Demofonti, Michele Tavassi

Centro Sviluppo Materiali S.p.A., Rome, Italy

Brian Rothwell

TransCanada PipeLines Limited, Calgary, AB, Canada

Paper No. IPC2006-10331, pp. 349-358; 10 pages
  • 2006 International Pipeline Conference
  • Volume 3: Materials and Joining; Pipeline Automation and Measurement; Risk and Reliability, Parts A and B
  • Calgary, Alberta, Canada, September 25–29, 2006
  • Conference Sponsors: Pipeline Division
  • ISBN: 0-7918-4263-0
  • Copyright © 2006 by ASME


The determination of the toughness values required for arresting ductile fracture propagation has been historically based on the use of models whose resulting predictions can be very unreliable when applied to new high strength linepipe materials (≥X100) and/or different operating conditions. In addition, for the modern high strength steels a methodology for determining the material fracture resistance for arresting running shear fracture starting from laboratory data is still lacking. The work here presented (developed within a PRCI sponsored project) deals with the use of CSM’s proprietary PICPRO® Finite Element code to develop methodologies for ductile fracture propagation control in high grade steel pipes. The relationships providing the maximum crack driving force which can be experienced in a pipe operated at known conditions have been determined, for different types of gas. On the other side, an empirical relationship has been found to correlate the critical Crack Tip Opening Angle (CTOA) determined by laboratory testing, to the critical CTOA on pipe (which represents the material fracture propagation resistance) with the aid of devoted simulations of past full-scale burst tests. By comparing Driving Force and Resistance Force, ductile fracture control for high strength steel pipelines can be achieved.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In