0

Full Content is available to subscribers

Subscribe/Learn More  >

The Role of Continuous Cooling Transformation Diagrams in Material Design for High Strength Oil and Gas Transmission Pipeline Steels

[+] Author Affiliations
Douglas G. Stalheim

DGS Metallurgical Solutions, Inc., Vancouver, WA

Govindarajan Muralidharan

Oak Ridge National Laboratory, Oak Ridge, TN

Paper No. IPC2006-10251, pp. 231-238; 8 pages
doi:10.1115/IPC2006-10251
From:
  • 2006 International Pipeline Conference
  • Volume 3: Materials and Joining; Pipeline Automation and Measurement; Risk and Reliability, Parts A and B
  • Calgary, Alberta, Canada, September 25–29, 2006
  • Conference Sponsors: Pipeline Division
  • ISBN: 0-7918-4263-0
  • Copyright © 2006 by ASME

abstract

The economical, environmental, and safe movement of gas and oil to the marketplace requires transmission pipelines to be designed to operate at higher pressures and/or with improved toughness over a variety of temperature ranges. To meet the higher strength and toughness specification requirements of these transmission pipelines, appropriate materials and processes must be used in their design and construction. This includes selection of appropriate alloy composition, processing routes, microstructure control, and cost. A continuous cooling transformation (CCT) diagram is a tool that can be used to select alloy composition and processing route in order to obtain a specific, desirable microstructure for transmission linepipe steels in a cost-effective manner. In the past, CCT diagrams were developed experimentally under laboratory conditions, thus requiring extensive time and effort. However, with the vast data available and improved computational tools, reasonably accurate computer generated CCT diagrams can be produced quickly. These computer generated diagrams can give the materials design engineer a reasonable understanding of the effect of subjecting a given alloy to various processing routes and hence the resultant microstructures. Since final microstructure is a key variable in determining the linepipe steel material properties, the chosen alloy/processing route and its effect on the final microstructure needs to be understood. This paper will discuss the role of CCT diagrams in the design of steels (cost, alloy, processing, and microstructure) for oil and gas transmission pipelines. Examples of computer generated CCT digrams for various API alloy designs are included.

Copyright © 2006 by ASME
Topics: Cooling , Steel , Design , Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In