0

Full Content is available to subscribers

Subscribe/Learn More  >

Applicability of Existing Models for Predicting Ductile Fracture Arrest in High Pressure Pipelines

[+] Author Affiliations
John Wolodko, Mark Stephens

C-FER Technologies, Edmonton, AB, Canada

Paper No. IPC2006-10110, pp. 115-123; 9 pages
doi:10.1115/IPC2006-10110
From:
  • 2006 International Pipeline Conference
  • Volume 3: Materials and Joining; Pipeline Automation and Measurement; Risk and Reliability, Parts A and B
  • Calgary, Alberta, Canada, September 25–29, 2006
  • Conference Sponsors: Pipeline Division
  • ISBN: 0-7918-4263-0
  • Copyright © 2006 by ASME

abstract

The ductile fracture arrest capability of gas pipelines is seen as one of the most important factors in the future acceptance of new high strength pipeline steels for high pressure applications. It has been acknowledged for some time that the current methods for characterizing and predicting the arrest toughness for ductile fracture propagation in high strength steels are un-conservative. This observation is based on the inability of existing models to predict the required arrest toughness in full-scale ductile fracture propagation tests. While considerable effort is currently being applied to develop more accurate methods for predicting ductile facture arrest, the resulting models are still in a preliminary stage of development and are not immediately amenable for use by the general engineering community. As an interim solution, a number of authors have advocated the empirical adjustment or reformulation of the existing models for use with the newer, high strength pipe grades. While this approach does not address the fundamental issues surrounding the fracture arrest problem, it does provide methods that can be used in the near term for analysis and preliminary design. The desire to use these existing methods, however, is tempered by the uncertainty associated with their applicability in situations involving high pressures and/or high toughness materials. In an attempt to address some of these concerns, a statistical analysis was conducted to assess the accuracy of a number of available fracture arrest models by comparing predictions to actual values determined from full-scale fracture propagation experiments. From the results, correction factors were developed for determining the required toughness levels in high pressure applications that account for the uncertainty in the theoretical prediction methods.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In