0

Full Content is available to subscribers

Subscribe/Learn More  >

An Application of Computational Fluid Dynamics (CFD) Code to the Design of a Multi-Stage Breakdown Orifice in Support of GSI-191 Evaluations

[+] Author Affiliations
J. C. Adams, L. I. Ezekoye, S. M. Smith, S. R. Swantner

Westinghouse Electric Company, Pittsburgh, PA

Paper No. PVP2007-26208, pp. 217-222; 6 pages
doi:10.1115/PVP2007-26208
From:
  • ASME 2007 Pressure Vessels and Piping Conference
  • Volume 7: Operations, Applications and Components
  • San Antonio, Texas, USA, July 22–26, 2007
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4285-1 | eISBN: 0-7918-3804-8
  • Copyright © 2007 by ASME

abstract

In September 2004, the Nuclear Regulatory Commission (NRC) issued Generic Letter GL2004-02 “Potential Impact of Debris Blockage on Emergency Recirculation during Design Basis Accidents at Pressurized-Water Reactors” to address Generic Safety Issue 191 (GSI-191) “Assessment of debris accumulation on PWR sump performance.” [1] GL2004-02 requested pressurized water reactor (PWR) licensees to perform a “downstream effects” evaluation of their emergency core cooling (ECCS) and containment spray systems (CSS). GL2004-02 also gave guidance on what analysis had to be completed in order to resolve GSI-191. These evaluations included a wear and plugging assessment of all ECCS and CSS components, including valves. During preliminary “downstream effects” analysis of a plant, it was determined that the positions of ECCS throttle valves could be such that the flow clearances through the valves would be too small to meet the criteria developed for component plugging or wear assessment. This suggested that a modification to the system needs to be made which allows the throttle valves to be more fully opened. In order to allow the throttle valves to be opened more fully, additional hydraulic resistance (i.e. pressure drop at the design flow rate) was added at another location. Several orifice designs were considered to provide the needed resistance. Since the required additional pressure drop was a substantial fraction of the total pressure drop, special design features of the orifice were necessary to preclude system instabilities due to cavitation, degassing and flow swirl. The purpose of this paper is to present a method for assessing the effectiveness of a multi-stage orifice that can be placed in the system to provide the required resistance, thus permitting the throttle valves to be used more efficiently. The paper presents the design aspects of the multi-stage breakdown orifice, CFD modeling used to select the design, and the system condition testing results.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In