Full Content is available to subscribers

Subscribe/Learn More  >

A Dynamic Model of Microscale Contact Breaking in RF MEMS Switches

[+] Author Affiliations
Gavin Gee, Brian D. Jensen

Brigham Young University, Provo, UT

Paper No. IJTC2006-12297, pp. 1475-1479; 5 pages
  • STLE/ASME 2006 International Joint Tribology Conference
  • Part B: Magnetic Storage Tribology; Manufacturing/Metalworking Tribology; Nanotribology; Engineered Surfaces; Biotribology; Emerging Technologies; Special Symposia on Contact Mechanics; Special Symposium on Nanotribology
  • San Antonio, Texas, USA, October 23–25, 2006
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4259-2 | eISBN: 0-7918-3789-0
  • Copyright © 2006 by ASME


For many applications, radio frequency microelectromechanical systems (RF MEMS) switches require very fast switching times so that they are capable of switching thousands of times each second. Contact adhesion tends to slow switches by increasing the time required to break the contact and open the switch. Previous work showed that typical switches have a contact opening time exceeding 1 ms, which is far too slow for many applications. This paper presents a dynamic, transient model to predict the time required to break the contact. The model considers both the motion of the switch body and the adhesion at the contact. The model has been validated by comparing it to experimental data. The model shows that vibrations in the switch body can be instrumental in dramatically reducing contact opening time by a factor of nearly 1000, leading to acceptable switch speeds.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In