Full Content is available to subscribers

Subscribe/Learn More  >

Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental Validation

[+] Author Affiliations
L. San Andrés

Texas A&M University, College Station, TX

Paper No. IJTC2006-12026, pp. 1221-1230; 10 pages
  • STLE/ASME 2006 International Joint Tribology Conference
  • Part B: Magnetic Storage Tribology; Manufacturing/Metalworking Tribology; Nanotribology; Engineered Surfaces; Biotribology; Emerging Technologies; Special Symposia on Contact Mechanics; Special Symposium on Nanotribology
  • San Antonio, Texas, USA, October 23–25, 2006
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4259-2 | eISBN: 0-7918-3789-0
  • Copyright © 2006 by ASME


Gas film bearings offer unique advantages enabling successful deployment of high-speed micro-turbomachinery. Current applications encompass micro power generators, air cycle machines and turbo expanders. Mechanically complex gas foil bearings are in use; however, their excessive cost and lack of calibrated predictive tools deter their application to mass-produced oil-free turbochargers, for example. The present investigation advances the analysis and experimental validation of hybrid gas bearings with static and dynamic force characteristics desirable in high-speed turbomachinery. These characteristics are adequate load support, good stiffness and damping coefficients, low friction and wear during rotor startup and shutdown, and most importantly, enhanced rotordynamic stability at the operating speed. Hybrid (hydrostatic/hydrodynamic) flexure pivot-tilting pad bearings (FPTPBs) demonstrate superior static and dynamic forced performance than other geometries as evidenced in a high speed rotor-bearing test rig. A computational model including the effects of external pressurization predicts the rotordynamic coefficients of the test bearings and shows good correlation with measured force coefficients, thus lending credence to the predictive model. In general, direct stiffnesses increase with operating speed and external pressurization; while damping coefficients show an opposite behavior. Predicted mass flow rates validate the inherent restrictor type orifice flow model for external pressurization. Measured coast down rotor speeds demonstrate very low-friction operation with large system time constants. Estimated drag torques from the gas bearings validate indirectly the recorded system time constant.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In