Full Content is available to subscribers

Subscribe/Learn More  >

Perspiration Nano-Patch for Hot Spot Thermal Management

[+] Author Affiliations
Shankar Narayanan, Andrei G. Fedorov, Yogendra K. Joshi

Georgia Institute of Technology, Atlanta, GA

Paper No. IPACK2007-33156, pp. 493-500; 8 pages
  • ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
  • ASME 2007 InterPACK Conference, Volume 2
  • Vancouver, British Columbia, Canada, July 8–12, 2007
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4278-9 | eISBN: 0-7918-3801-3


A novel cooling scheme utilizing evaporative cooling for an ultra-thin, spatially confined liquid film is described for meeting the challenge of hot spot thermal management aiming at locally removing heat fluxes in excess of 200 W/cm2 . This work presents the conceptual system design and results of performance calculations supporting the feasibility of the proposed cooling scheme. The phase change heat transfer is one of the most efficient means of heat transfer due to an advantage offered by the significant latent heat of vaporization of liquids. Fundamentally, evaporation could be a much more efficient method of heat removal as compared to boiling if certain conditions are met. Theoretically, we demonstrate that if a stable monolayer of liquid can be maintained on the surface and fully dry sweeping gas (e.g., air) is blown at high velocity above this liquid monolayer one can dissipate heat fluxes of the order of several hundreds of Watts per cm2 . We also show that a more volatile FC-72 can outperform water in evaporative cooling using stable liquid microfilms.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In