0

Full Content is available to subscribers

Subscribe/Learn More  >

Accelerating the Hyperbolic Display of Complex 2D Scenes Using the GPU

[+] Author Affiliations
Mike Bailey

Oregon State University, Corvallis, OR

Nick Gebbie

University of California at San Diego, La Jolla, CA

Paper No. DETC2006-99477, pp. 913-920; 8 pages
doi:10.1115/DETC2006-99477
From:
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 26th Computers and Information in Engineering Conference
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4257-8 | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME

abstract

Hyperbolic geometry is a useful visualization technique for displaying a large quantity of two dimensional data simultaneously. What distinguishes this technique is that one particular area can be displayed in full detail with all other areas displayed in lesser detail. In this way, the entire scene is still on the screen so that the entire set of relationships, as well as emergency indicators, can always be seen. But, because the hyperbolic transformation equation is non-linear, it cannot be placed in the standard graphics hardware 4x4 homogeneous matrix. Thus, using the hyperbolic transformation prevents full use of the graphics pipeline hardware, and drastically reduces interactive speed. This paper discusses a way to recoup this display performance by encoding the hyperbolic transform into an OpenGL vertex shader that resides on the graphics GPU hardware. In this way, the hyperbolic transform can still be used interactively, even for very complex 2D scenes.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In