0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Pipes for High Temperature Thermal Management

[+] Author Affiliations
David B. Sarraf, William G. Anderson

Advanced Cooling Technologies, Inc., Lancaster, PA

Paper No. IPACK2007-33984, pp. 707-714; 8 pages
doi:10.1115/IPACK2007-33984
From:
  • ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
  • ASME 2007 InterPACK Conference, Volume 1
  • Vancouver, British Columbia, Canada, July 8–12, 2007
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4277-0 | eISBN: 0-7918-3801-3
  • Copyright © 2007 by ASME

abstract

Copper water heat pipes are a well-established solution for many conventional electronics cooling applications; however they have several problems when applied to high temperature electronics. The high vapor pressure of the working fluid combined with the decreasing strength of an already soft material leads to excessive wall thickness, high mass, and an inability to make thermally useful structures such as planar heat pipes (vapor chambers) or heat pipes with flat input surfaces. Titanium/water and Monel/water heat pipes can overcome the disadvantages of copper/water heat pipes and produce a viable thermal management solution for high temperature electronics. Water remains the fluid of choice at temperature up to about 280°C due to its favorable transport properties. Life tests have shown compatibility at high temperature. At temperatures above roughly 300°C, water is no longer a suitable fluid, due to high vapor pressure and low surface tension as the critical point is approached. At higher temperatures, another working fluid/envelope combination is required, either an organic or halide working fluid. Preliminary halide life test results are presented, giving fluids that can operate at temperatures as high as 425°C. At higher temperatures, alkali metal heat pipes are suitable. Water and the higher temperature working fluids can offer solutions for cooling high-temperature electronics, or those working at or above 150°C.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In