0

Full Content is available to subscribers

Subscribe/Learn More  >

Vapor Chambers in Blade Server CPU Cooling Solutions

[+] Author Affiliations
Matt Connors

Thermacore, Inc., Lancaster, PA

Paper No. IPACK2007-33779, pp. 703-705; 3 pages
doi:10.1115/IPACK2007-33779
From:
  • ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
  • ASME 2007 InterPACK Conference, Volume 1
  • Vancouver, British Columbia, Canada, July 8–12, 2007
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4277-0 | eISBN: 0-7918-3801-3
  • Copyright © 2007 by ASME

abstract

Current blade processors need air cooling solutions that dissipate 100–300 watts with heat sinks that are less than 30 mm high. In order to cool these processors, the heat sink base has to grow in length and width to compensate for the lack of available height. As these dimensions grow, decreasing the base spreading of the heat sink becomes an important factor is decreasing the overall resistance of the heat sink. A vapor chamber used as a substitute to common copper or aluminum as the base of the heat sink can increase performance by 20–25%. A vapor chamber is a two phase heat transport system that significantly reduces the spreading resistance in applications where there is a high heat flux processor coupled with a large heat sink. In this paper, a CFD model will be constructed to predict the performance gains realized by using a vapor chamber base in lieu of a copper or aluminum base. These predictions will then be experimentally tested to confirm the modeling parameters and the actual measured thermal performance of the heat sink. By utilizing vapor chambers in heat sink design, thermal engineers will gain valuable heat sink performance within the constraints imposed by the blade system architecture.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In