0

Full Content is available to subscribers

Subscribe/Learn More  >

Challenges and Advances of Heat Pipes in Cooling Notebook Systems

[+] Author Affiliations
Sridhar V. Machiroutu, Himanshu Pokharna

Intel Corporation, Santa Clara, CA

Masahiro Kuroda

Intel IJKK, Tsukuba, Ibaraki, Japan

Paper No. IPACK2007-33249, pp. 677-687; 11 pages
doi:10.1115/IPACK2007-33249
From:
  • ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
  • ASME 2007 InterPACK Conference, Volume 1
  • Vancouver, British Columbia, Canada, July 8–12, 2007
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4277-0 | eISBN: 0-7918-3801-3
  • Copyright © 2007 by ASME

abstract

Notebooks represent an increasing percentage of PC client market with growth surpassing that of desktop computers. Heat pipe has been an integral part of notebook computer system cooling and will remain so for the foreseeable future. Heat pipe allows for efficient transport of heat from the CPU and other high power components to a location where there is more room for accommodating motherboard cutout for a fan and a heat exchanger. The thermal resistance along this path must be minimized to enable maximum cooling. This paper first briefly describes the contributing resistance in a heat pipe and ways to measure them for a notebook thermal solution. Since there are several parameters that can affect the performance of the heat pipes, we use an experimental procedure utilizing DOE (Design of Experiments) to first understand the sensitivities of these design, manufacturing and usage parameters on performance and then to arrive at an optimum level of these parameters to minimize various resistances in a heat pipe. We show that for various different wick technologies, it is possible to optimize the heat pipes to achieve an evaporator performance of the level of 0.1 C-cm2/W. Furthermore, we show some simple design rules to minimize the condenser resistance and also results of a design study to optimize the design of heat pipe block at the CPU end to minimize the evaporator resistance. We want to encourage the heat pipe vendor community to use these methods to optimize their products for performance as well as process enhancements to produce higher performing parts, at lower cost.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In