0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Behavior of VARTM Manufactured Biaxial Braided Composites

[+] Author Affiliations
Jitendra S. Tate, Ajit D. Kelkar

North Carolina A&T State University, Greensboro, NC

Paper No. IMECE2003-43850, pp. 177-180; 4 pages
doi:10.1115/IMECE2003-43850
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Recent Advances in Mechanics of Solids and Structures
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-3726-2 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

Braided composites have good properties in mutually orthogonal directions, more balanced properties than traditional tape laminates, and have potentially better fatigue and impact resistance due to the interlacing. Another benefit is reduced manufacturing cost by reducing part count. Because of these potential benefits braided composites are being considered for various applications ranging from primary/secondary structures for aerospace structures [1]. These material systems are gaining popularity, in particular for the small business jets, where FAA requires taken off weights of 12,500 lb. or less. The new process, Vacuum Assisted Resin Transfer Molding (VARTM), is low cost, affordable and suitable for high volume manufacturing environment. Recently the aircraft industry has been successful in maufacturing wing flaps, using carbon fiber braids and epoxy resin and the VARTM process. To utilize these VARTM manufactured braided materials to the fullest advantage (and hence to avoid underutilization), it is necessary to understand their behavior under different loading and environmental conditions. This will reduce uncertainty and hence reduce the factor of safety in the design. Any typical structural member made of composite material is subjected to different types of loading such as static, impact, cyclic causing fatigue, and environmental effects such as change in temperature and exposure to moisture and other corrosives. It is well known that cyclic loading reduces the strength of a material and its useful life or, the fatigue strength of a material is lower than its static strength. This is true of all materials—metals, plastics, composite materials, etc. In structural applications, fatigue loading is unavoidable especially in aerospace and ground transportation applications. This research addresses the tensiontension fatigue behavior of biaxial braided composites.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In