0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Fatigue Life Determination of CCGA Interconnect Using a Simple Method

[+] Author Affiliations
T. E. Wong, C. Chu

Raytheon Space and Airborne Systems, El Segundo, CA

Paper No. IPACK2007-33247, pp. 359-364; 6 pages
doi:10.1115/IPACK2007-33247
From:
  • ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
  • ASME 2007 InterPACK Conference, Volume 1
  • Vancouver, British Columbia, Canada, July 8–12, 2007
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4277-0 | eISBN: 0-7918-3801-3
  • Copyright © 2007 by ASME

abstract

A simplified method was developed to determine the fatigue life of a ceramic column grid array (CCGA) solder joint when exposed to thermal environments. The CCGA package with 90Pb/10Sn solder columns is soldered onto the printed circuit board with a tin-lead solder paste. Failure of the solder joint occurs at the CCGA solder column. A closed-form solution with the equilibrium of displacements of electronic package assembly was first derived to calculate the solder joint strains during the temperature cycling. In the calculation, an iteration technique was used to obtain a convergent solution in the solder strains, and the elastic material properties were used for all the electronic package assembly components except for the solder materials, which used elastic-plastic properties. A fatigue life prediction model, evolved from an empirically derived formula based upon a modified Coffin-Manson fatigue theory, was then established. CCGA test results, obtained from various sources, combined with the derived solder strains were used to calibrate the proposed life prediction model. In the model calibration process, the 625- and 1657-pin CCGA test results, which were cycled between 20°C/90°C, 0°C/100°C, −55°C/110°C, or −55°C/125°C, were reasonably well correlated to the calculated values of solder strains. In addition, this calibrated model is remarkably simple compared to the model used in an evaluation by a finite element analysis. Therefore, this model could be used and is recommended to serve as an effective tool to make a preliminarily estimate at the CCGA solder joint thermal fatigue life. It is also recommended to 1) select more study cases with various solder joint configurations, package sizes, environmental profiles, etc. to further calibrate this life prediction model, 2) use this model to conduct parametric studies to identify critical factors impacting solder joint fatigue life and then seeking an optimum design, and 3) develop a similar life prediction model for lead-free solder materials.

Copyright © 2007 by ASME
Topics: Fatigue life

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In