0

Full Content is available to subscribers

Subscribe/Learn More  >

Chip-on-Beam and Hydrostatic Calibration of the Piezoresistive Coefficients on (111) Silicon

[+] Author Affiliations
Chun-Hyung Cho, Richard C. Jaeger, Jeffrey C. Suhling, M. Kaysar Rahim

Auburn University, Auburn, AL

Paper No. IPACK2007-33570, pp. 297-307; 11 pages
doi:10.1115/IPACK2007-33570
From:
  • ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
  • ASME 2007 InterPACK Conference, Volume 1
  • Vancouver, British Columbia, Canada, July 8–12, 2007
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4277-0 | eISBN: 0-7918-3801-3
  • Copyright © 2007 by ASME

abstract

Stress sensing test chips are used to investigate die stresses arising from assembly and packaging operations. The chips incorporate resistor or transistor sensing elements that are able to measure stresses via the observation of the changes in their resistivity/mobility. The piezoresistive behavior of such sensors is characterized by three piezoresistive (pi) coefficients, which are electro-mechanical material constants. Stress sensors fabricated on the surface of the (111) silicon wafers offer the advantage of being able to measure the complete stress state compared to such sensors fabricated on the (100) silicon. However, complete calibration of the three independent piezoresistive coefficients is more difficult and one approach utilizes hydrostatic measurement of the silicon “pressure” coefficients. We are interested in stress measurements over a very broad range of temperatures, and this paper present the experimental methods and results for hydrostatic measurements of the pressure coefficient of both n- and p-type silicon over a wide range of temperatures and then uses the results to provide a complete set of temperature dependent piezoresisitive coefficients for the (111) silicon.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In