Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Performance Evaluation and Enhancement for an Automotive Wireless Application Incorporating Multiple Dynamic Heat Sources

[+] Author Affiliations
Victor Chiriac, Tien-Yu Tom Lee

Freescale Semiconductor, Inc., Tempe, AZ

Paper No. IPACK2007-33705, pp. 233-239; 7 pages
  • ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
  • ASME 2007 InterPACK Conference, Volume 1
  • Vancouver, British Columbia, Canada, July 8–12, 2007
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4277-0 | eISBN: 0-7918-3801-3
  • Copyright © 2007 by ASME


A detailed transient thermal study for a Remote Keyless Entry System with dynamic heat sources is performed using numerical simulations. The SmartMOS-type device is packaged in a 54 lead SOIC (small outline IC) package with an exposed copper slug. The package is attached to a 4-layer PCB with thermal vias embedded in the board. The challenge resides in the transient thermal interaction between several dynamic heat sources (channels), activated in a sequential fashion following different powering profiles and patterns. The main purpose of the device is to wirelessly provide a communication path between the remote and the receiver placed in the car, so the distance and the signal strength between the two are paramount for an optimal operation. The signal strength is directly associated with the voltage (and associated powering) levels. Several operating scenarios are evaluated by modifying the system design (thermal via pattern) and varying both power dissipation and duration levels. The study starts with just one channel dissipating power, followed by activating the entire dynamic system comprised of six channels dissipating each powers reaching up to 22W at different time intervals. The transient thermal behavior of each source is analyzed during the process. Results indicate that the system dissipating over 14V exceeds the thermal budget (150C) after only 3 powering cycles. Based on the analysis of the complex temperature fields for the multiple dynamic source system, the authors identify alternative power profiles to improve the thermal performance of the overall wireless system, by splitting the power in selective channels and by modifying the power sequence. Several additional cases are further investigated, and the optimized power profiles indicate that they satisfy the thermal budget under various operating conditions and several multiple cycles, while still maintaining the device voltage at 14V levels. A thorough study of the transient patterns and needed system improvements are included.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In