0

Full Content is available to subscribers

Subscribe/Learn More  >

Shape Similarity Matching With Octree Representations

[+] Author Affiliations
Jingsheng Zhang, Shana Smith

Iowa State University, Ames, IA

Paper No. DETC2006-99397, pp. 41-49; 9 pages
doi:10.1115/DETC2006-99397
From:
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 26th Computers and Information in Engineering Conference
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4257-8 | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME

abstract

Shape matching is one of the fundamental problems in content-based 3D shape retrieval. Since there are typically a large number of possible matches in a shape database, there is a crucial need to perform shape matching efficiently. As a result, shapes must be reduced into a simpler shape representation, and computational complexity is one of the most important criteria for evaluating 3D shape representations. To meet the need, the investigators have implemented a new effective and efficient approach for 3D shape matching, which uses a simplified octree representation of 3D mesh models. The simplified octree representation was developed to improve time and space efficiency over prior representations. In addition, octree representations are rapidly becoming the standard file format for delivering 3D content across the Internet. The proposed approach stores octree information in XML files, rather than using a new data file type, to facilitate comparing models over the Internet. New methods for normalizing models, generating octrees, and comparing models were developed. The proposed approach allows users to efficiently exchange shape information and compare models over the Internet, in standardized data and data file formats, without transferring exact model files. The proposed approach is the first step in a project which will build a complete 3D model database and data retrieval system, which can be incorporated with other data mining techniques.

Copyright © 2006 by ASME
Topics: Octrees , Shapes

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In