Full Content is available to subscribers

Subscribe/Learn More  >

Quantitative Characterization of Microsystem Dynamics

[+] Author Affiliations
Ryszard J. Pryputniewicz

Worcester Polytechnic Institute, Worcester, MA

Emily J. Pryputniewicz

Department of Homeland Security, Alexandria, VA

Paper No. IPACK2007-33503, pp. 37-42; 6 pages
  • ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
  • ASME 2007 InterPACK Conference, Volume 1
  • Vancouver, British Columbia, Canada, July 8–12, 2007
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4277-0 | eISBN: 0-7918-3801-3
  • Copyright © 2007 by ASME


Development of microelectromechanical system (MEMS) sensors for various applications requires the use of analytical and computational modeling/simulation coupled with rigorous physical measurements. This requirement has led to advancement of an approach that combines computer aided design (CAD) and multiphysics modeling/simulation tools with the state-of-the-art (SOTA) measurement methodology to facilitate reduction of high prototyping costs, long product development cycles, and time-to-market pressures while devising MEMS for a variety of applications. In this approach, a unique, fully integrated software environment for multiscale, multiphysics, high fidelity modeling of MEMS is combined with the optoelectronic laser interferometric microscope methodology for quantitative measurements. The optoelectronic methodology allows remote, noninvasive full-field-of view (FFV) measurements of deformations/motions (under operating conditions) with high spatial resolution, nanometer accuracy, and in near real-time. In this paper, both, the modeling environment (including an analytical process used to quantitatively show the influence that various parameters defining a sensor have on its dynamics — using this process dynamic characteristics of a sensor can be optimized by constraining its nominal dimensions and finding the optimum set of uncertainties in these dimensions that best satisfy design requirements/specifications) and the optoelectronic methodology are described and their applications are illustrated with representative examples demonstrating viability of the approach, combining modeling and measurements, for quantitative characterization of microsystem dynamics. These representative examples demonstrate capability of the approach described herein to quantitatively determine effects of dynamic loads on performance of selected MEMS.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In