Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Testing and Model Validation of a Capture Mechanism for Rendezvous Between a Space Tether and Payload

[+] Author Affiliations
Stephen L. Canfield, Marshall A. Norris

Tennessee Technological University, Cookeville, TN

Seth V. Knight

Arnold Engineering Development Center, Tullahoma, TN

Kirk F. Sorensen

Marshall Space Flight Center, Huntsville, AL

Paper No. DETC2006-99594, pp. 529-538; 10 pages
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 30th Annual Mechanisms and Robotics Conference, Parts A and B
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4256-8 | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME


Momentum eXchange Electrodynamic Reboost, or MXER, tether systems have been proposed to serve as an “upper stage in space” [1]. A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, using the same principles that make an electric motor work, it would slowly rebuild its orbital momentum by pushing against the Earth’s magnetic field without using any propellant. One of the significant challenges in developing a momentum-exchange / electrodynamic reboost tether system is in the analysis and design of the capture mechanism and its effects on the overall dynamics of the system [2]. A capture mechanism that provides nearly passive operation is presented and described in [3] and led to the fabrication of a prototype article of this mechanism. This paper will describe the process of testing this prototype in a dynamically similar environment and validating an associated dynamic model. The primary contributions of this paper will be a description of the proposed capture mechanism concept and associated testing process and the validation of a dynamic model of this mechanism.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In