Full Content is available to subscribers

Subscribe/Learn More  >

Experiments and Analytical Simulation Work on an Innovative Steam-Injector-Driven Passive Core Injection Cooling System

[+] Author Affiliations
Michitsugu Mori, Shuichi Ohmori, Fumitoshi Watanabe

Tokyo Electric Power Company, Inc., Tokyo, Japan

Tadashi Narabayashi

Hokkaido University, Sapporo, Hokkaido, Japan

Paper No. HT2007-32721, pp. 635-644; 10 pages
  • ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference
  • ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, Volume 2
  • Vancouver, British Columbia, Canada, July 8–12, 2007
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4275-4 | eISBN: 0-7918-3801-3
  • Copyright © 2007 by ASME


A Steam Injector (SI) is a simple, compact, passive pump which also functions as a high-performance direct-contact compact heater. We are developing this innovative concept by applying the SI system to core injection systems in Emergency Core Cooling Systems (ECCS) to further improve the safety of nuclear power plants. Passive ECCS in nuclear power plants would be inherently very safe and would prevent serious accidents by keeping the core covered with water (Severe Accident-Free Concept). The Passive Core Coolant Injection System driven by a high-efficiency SI is one that, in an accident such as a loss of coolant accident (LOCA), attains a higher discharge pressure than the supply steam pressure used to inject water into the reactor by operating the SI using water stored in the pool as the water supply source and steam contained in the reactor as the source of pressurization energy. The passive SI equipment would replace large, rotating machines such as pumps and motors, so eliminating the possibility of such equipment failing. In this Si-driven Passive Core Coolant Injection System (SI-PCIS), redundancy will be provided to ensure that the water and steam supply valves to the SI open reliably, and when the valves open, the SI will automatically start to inject water into the core to keep the core covered with water. The SI used in SI-PCIS works for a range of steam pressure conditions, from atmosphere pressure through to high pressures, as confirmed by analytical simulations which were done based on comprehensive experimental data obtained using reduced scale SI. We did further simulations and evaluations of the core cooling and coolant injection performance of SI-PCIS in BWR using RETRAN-3D code, developed using EPRI and other utilities, for the case of small LOCA. Reactors equipped with passive safety systems — the gravity-driven core cooling/injection system (GDCS) and depressurization valves (DPV) — would inevitably end up having large LOCA, even if they are initially small LOCA, as depressurization valves are forcibly opened in order to inject coolant from the GDCS pool to the GDCS water head at up to ∼0.2MPa. On the other hand, our simulation demonstrated that SI-PCIS could prevent large LOCA occurring in reactors by having by coolant discharged into the core in the event of small LOCA or when DPV unexpectedly open.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In