Full Content is available to subscribers

Subscribe/Learn More  >

Molecular Dynamics Modeling of Thermal Conductivity of Engineering Fluids and Its Enhancement Due to Nanoparticle Inclusion

[+] Author Affiliations
C. B. Sobhan, Nithin Mathew, Rahul Ratnapal, N. Sankar

National Institute of Technology-Calicut, Kerala, India

Paper No. CANEUS2006-11019, pp. 21-26; 6 pages
  • CANEUS 2006: MNT for Aerospace Applications
  • CANEUS2006: MNT for Aerospace Applications
  • Toulouse, France, August 27–September 1, 2006
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4254-1 | eISBN: 0-7918-3787-4
  • Copyright © 2006 by ASME


A theoretical methodology based on molecular dynamics modeling, for the estimation of the enhancement of the thermal conductivity of fluids by the introduction of suspended metallic nanoparticles is proposed here. This involves the process of generating the atomic trajectories of a system of a finite number of particles by direct integration of the classical Newton’s equations of motion, with appropriate interatomic potentials and application of suitable initial and boundary conditions. Algorithms are made for simulating the nanofluid abiding the procedural steps of the Molecular Dynamics method. The method is presented as a means to solve the generic problem of thermal conductivity enhancement of liquids in the presence of nanoparticles, and illustrated using a specific simulation procedure with properties representing water and platinum nanoparticles. The thermal conductivity enhancement in the base fluid due to suspension of nanoparticles, estimated using Molecular dynamics simulations are compared with existing experimental results and those predicted by conventional effective medium theories. Parametric studies are conducted to obtain the variation of thermal conductivity enhancement with the temperature, and the volume fraction of the nanoparticles in the suspension.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In