0

Full Content is available to subscribers

Subscribe/Learn More  >

An Education Program in Support of a Sustainable Future

[+] Author Affiliations
J. W. Sutherland, V. Kumar, J. C. Crittenden, M. H. Durfee, J. K. Gershenson, H. Gorman, D. R. Hokanson, N. J. Hutzler, D. J. Michalek, J. R. Mihelcic, D. R. Shonnard, B. D. Solomon, S. Sorby

Michigan Technological University, Houghton, MI

Paper No. IMECE2003-43422, pp. 611-618; 8 pages
doi:10.1115/IMECE2003-43422
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Manufacturing
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 0-7918-3720-3 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

The historical evolution and current status of sustainability education at Michigan Technological University is described. The history considers the last 15 years, during which, the faculty of Michigan Tech have been collaborating on the development of environmental curricula and courses. This development effort initially focused on specialized offerings for the environmental/chemical engineering programs. With time, recognition of the importance of environmental issues (wastes, natural resources, energy, etc.) to other disciplines across the campus grew. For example, chemists, biologists, foresters, etc. each have a role in characterizing the behavior of ecological systems. Engineering disciplines that are focused on the design of products, processes, or systems influence long term societal sustainability. Social scientists must understand the relationship/linkages between the environment, industry, citizens, and government. Greener products, environmentally responsible processes, life cycle thinking, and environmental stewardship need to become part of the modern lexicon of globally aware students. Faculty from diverse disciplines across the campus are now collaborating to develop courses and modify curricula to educate students with respect to the triple bottom line (i.e., sustainable economic, societal, and environmental future). Problems associated with the traditional education paradigm are discussed. A new education model aimed at training students to create a sustainable future is proposed.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In