0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Feed-Rate Scheduling for High-Speed Contouring

[+] Author Affiliations
J. Dong, J. A. Stori

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. IMECE2003-42357, pp. 497-513; 17 pages
doi:10.1115/IMECE2003-42357
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Manufacturing
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 0-7918-3720-3 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

The majority of efforts to improve the contouring performance of high-speed CNC systems have focused on advances in feed-back control techniques at the single-axis servo level. Regardless of the dynamic characteristics of an individual system, performance will inevitably suffer when that system is called upon to execute a complex trajectory beyond the range of its capabilities. The intent of the present work is to provide a framework for abstracting the capabilities of an individual multi-axis contouring system, and a methodology for using these capabilities to generate a time-optimal feed-rate profile for a particular trajectory on a particular machine. Several constraints are developed to drive the feed-rate optimization algorithm. First, simplified dynamic models of the individual axes are used to generate performance envelopes that couple the velocity vs. acceleration capabilities of each axis. Second, bandwidth limitations are introduced to mitigate frequency related problems encountered when traversing sharp geometric features at high velocity. Finally, a dynamic model for the instantaneous following error is used to estimate the contour-error as function of the instantaneous velocity and acceleration state. We present a computationally efficient algorithm for generating a minimum-time feed-rate profile subject to the above constraints, and demonstrate that significant improvements in contouring accuracy can be realized through such an approach. Experimental results are presented on a conventional two-axis X-Y stage executing a complex trajectory.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In