Full Content is available to subscribers

Subscribe/Learn More  >

Metal Inert Gas (MIG) Welding Process Optimization for Joining Aluminum 5754 Sheet Material Using OTC/Daihen Equipment

[+] Author Affiliations
R. Koganti, C. Karas, A. Joaquin, D. Henderson, M. Zaluzec, A. Caliskan

Ford Motor Company, Dearborn, MI

Paper No. IMECE2003-42473, pp. 409-425; 17 pages
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Manufacturing
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 0-7918-3720-3 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME


The development of lightweight vehicles, in particular aluminum intensive vehicles, require significant manufacturing process development for joining and assembling aluminum structures. Currently, 5xxx and 6xxx aluminum alloys are being used in various structural applications in a number of lightweight vehicles worldwide. Various joining methods, such as MIG, Laser and adhesive bonding have been investigated as technology enables for high volume joining of 5xxx, and 6xxx series alloys. In this study, metal inert gas (MIG) welding is used to join 5754 non-heat-treatable alloy sheet products. The objective of this study is to develop optimum weld process parameters for non-heat-treatable 5754 aluminum alloys. The MIG welding equipment used in this study is an OTC/Daihen CPD-350 welding systems and DR-4000 pulse power supply. The factors selected to understand the influence of weld process parameters on the mechanical properties and metallurgy (weld penetration) include power input (torch speed, voltage, current, wire feed), pulse frequency, and gas flow rate. Test coupons used in this study were based on a single lap configuration. A full factorial design of experiment (DOE) was conducted to understand the main and interaction effects on joint failure and weld penetration. The joint strengths and weld penetrations are measured for various operating ranges of weld factors. Post weld analysis indicates, power input and gas flow rate are the two signficant factors (statistically) based on lap shear load to failure and weld penentration data. There were no 2-way or 3-way interaction effects observed in ths weld study. Based on the joint strength and weld penetration, optimum weld process factors were determined.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In