0

Full Content is available to subscribers

Subscribe/Learn More  >

CBN Tool Wear Modeling in Finish Hard Turning

[+] Author Affiliations
Yong Huang

Clemson University, Clemson, SC

Steven Y. Liang

Georgia Institute of Technology, Atlanta, GA

Paper No. IMECE2003-42165, pp. 193-200; 8 pages
doi:10.1115/IMECE2003-42165
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Manufacturing
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 0-7918-3720-3 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

The cubic boron nitride (CBN) cutting tools are commonly used for single point turning of hardened materials. The wear behavior and tool life of CBN cutters are important issues in order for hard turning to be a viable technology in view of the high cost of CBN cutting tools and the cost of down-time for tool change. The objective of this study is to develop a methodology to model the rate of CBN tool wear on both the flank and rake faces. The model can serve both as a basis to guide the design of CBN tool geometry and to optimize cutting parameters in finish hard turning. First, the kinematics, stress distribution, and temperature variation on the tool flank and rake faces are formulated. Subsequently, the wear volume loss is modeled as functions of cutting temperature, stress, and other process information based on the consideration of main wear mechanisms of abrasion, adhesion, and diffusion. Then, flank/crater wear rates are predicted in terms of tool/work material properties and cutting configuration. Finally, based on the calibrated wear coefficients in independent tests, the proposed models are experimentally validated in finish turning hardened 52100 bearing steel using a low CBN content insert. The model predictions agree with the measurements in terms of the behavior of stable growths of wear land and crater. The adhesion is found to be the dominating wear mechanism over the range of cutting parameters examined.

Copyright © 2003 by ASME
Topics: Wear , Finishes , Turning , Modeling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In