Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Harmonic Force Components on Regenerative Stability in End Milling

[+] Author Affiliations
J.-J. Junz Wang, C. Y. Huang

National Cheng Kung University, Tainan, Taiwan

C. M. Zheng

National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan

Paper No. IMECE2003-42367, pp. 103-112; 10 pages
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Manufacturing
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 0-7918-3720-3 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME


In a systematic manner, this paper investigates the effects of harmonic force components on the regenerative stability of an end milling process. By representing the milling force pulsation in a Fourier series expansion form, the dynamic force components and the average forces due to bi-directional dynamic feed rates are both included in the generalized system dynamics formulation. In the resulting expression for the stability criterion, the spectral features of the milling forces are integrated with the dynamics of the structure, showing the significance or insignificance of the dynamic components of the milling forces in affecting the stability of the milling process. Key system parameters discussed include the magnitude of the average and harmonic forces, the cutter helix angle and the spindle speed. It is shown that a low helix angle and a smaller number of cutting flutes increase the effect of dynamic forces on the system stability. The significance of the harmonic forces is exemplified by the special cutting conditions where the average force becomes zero and the stability limits would be infinite as predicted by models using the average force alone. Improvements in the accuracy of stability lobes resulting from the inclusion of the dynamic forces and the validity of the presented model in general will be illustrated by numerical simulation and verified by experiments as well as by comparison with published results.

Copyright © 2003 by ASME
Topics: Force , Stability , Milling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In