0

Full Content is available to subscribers

Subscribe/Learn More  >

Natural Convection in a Concentric Annulus With a Porous Sleeve

[+] Author Affiliations
J. C. Leong, F. C. Lai

University of Oklahoma, Norman, OK

Paper No. IMECE2003-43168, pp. 377-387; 11 pages
doi:10.1115/IMECE2003-43168
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 4
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3718-1 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

Analytical solutions obtained through perturbation method and Fourier transform are presented for natural convection in concentric cylinders with a porous sleeve. The porous sleeve is press-fitted to the inner surface of the outer cylinder. Both the inner and outer cylinders are kept at constant temperatures with the inner surface at a slightly higher temperature than that of the outer. The main objective of the present study is to investigate the buoyancy-induced flow as affected by the presence of the porous layer. A parametric study has been performed to investigate the effects of Rayleigh number, Darcy number, porous sleeve thickness, and relative thermal conductivity on the heat transfer results.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In