Full Content is available to subscribers

Subscribe/Learn More  >

Integration of Molecular Dynamics Simulations and Boltzmann Transport Equation in Phonon Thermal Conductivity Analysis

[+] Author Affiliations
A. J. H. McGaughey, M. Kaviany

University of Michigan, Ann Arbor, MI

J. D. Chung

Sejong University, Seoul, Korea

Paper No. IMECE2003-41899, pp. 277-287; 11 pages
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 4
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3718-1 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME


The thermal conductivity of the Lennard-Jones argon crystal is predicted using the Boltzmann transport equation under the single mode relaxation time approximation. The temperature and frequency dependence of the phonon dispersion and phonon relaxation times are obtained from lattice dynamics calculations based on the results of molecular dynamics simulations. No fitting parameters are required. The thermal conductivity results are in agreement with predictions from the simulations using the Green-Kubo method. Assuming that the dispersion is linear or temperature independent, as is often done in analytical calculations, leads to large errors in the predictions. This result suggests that the fitting parameters required in such calculations offset significant errors introduced by these simplifying assumptions.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In