Full Content is available to subscribers

Subscribe/Learn More  >

Pull-In Parameters of Cantilever Type Nanomechanical Switches in Presence of Casimir Force

[+] Author Affiliations
Asghar Ramezani, Aria Alasty, Javad Akbari

Sharif University of Technology, Tehran, Iran

Paper No. ESDA2006-95316, pp. 955-962; 8 pages
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems, Bioengineering and Biomedical Technology, Fluids Engineering, Maintenance Engineering and Non-Destructive Evaluation, and Nanotechnology
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4249-5 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME


In this paper, the influence of the Casimir force on two main parameters describing an instability point of cantilever type nanomechanical switches, which are the pull-in voltage and deflection are investigated by using a distributed parameter beam model. The nonlinear differential equation of the model is transformed into the integral form by using the Green’s function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The detachment length and the minimum initial gap of the cantilever type switches are given, which are the basic design parameters for NEMS switches. The pull-in parameters of micromechanical electrostatic actuators are also investigated as a special case of our study by neglecting the Casimir effect.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In