0

Full Content is available to subscribers

Subscribe/Learn More  >

Critical Penetration Depth for Nano/Micro Indentation Test to Determine Elastic-Plastic Film Properties Deposited on Hard Substrates

[+] Author Affiliations
Norimasa Chiba, Nagahisa Ogasawara, Constantin Razvan Anghel

National Defense Academy, Yokosuka, Japan

Xi Chen

Columbia University, New York, NY

Paper No. ESDA2006-95143, pp. 931-938; 8 pages
doi:10.1115/ESDA2006-95143
From:
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems, Bioengineering and Biomedical Technology, Fluids Engineering, Maintenance Engineering and Non-Destructive Evaluation, and Nanotechnology
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4249-5 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME

abstract

The critical indentation depth to obtain proper elastic-plastic properties of thin film when the indentation tests are done on film/substrate system with sharp indenters is investigated. We focus on the characterization problem of soft film material, whose material properties are unknown, deposited on hard substrates. The critical depth is analyzed based on the finite element analysis (FEA) results. In order to extract the mechanical properties of the film from those of the film/substrate compound, we have to restrict the maximum penetration depth within a certain value. In this paper the relation between the load, P, and the depth, h, is analyzed in a power law relation, P = Chm , where the exponent m is a function of h. From extensive FEA results, we found that this exponent m starts to depart from 2 faster with increasing indenter apex angle and increasing hardening exponent of the film material. This means that the critical indentation depth decreases with increasing indenter apex angle and increasing hardening exponent. Based on this analysis, we propose a simple formula to evaluate the critical penetration depth h0 , as a function of apex angle, θ, of the indenter: h0 /d = 0.243cot θ, where d is the film thickness.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In