Full Content is available to subscribers

Subscribe/Learn More  >

Computational and Neuro-Fuzzy Study of the Effect of Small Objects on the Flow and Thermal Fields of Bluff Bodies

[+] Author Affiliations
Ahmed F. Abdel Gawad

Zagazig University, Zagazig, Egypt

Paper No. ESDA2006-95011, pp. 613-622; 10 pages
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems, Bioengineering and Biomedical Technology, Fluids Engineering, Maintenance Engineering and Non-Destructive Evaluation, and Nanotechnology
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4249-5 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME


The aim of the present study is to find computationally the optimum parameters that affect the drag reduction of bluff bodies using a small object (obstacle). These parameters include the size of the obstacle as well as the gap between the obstacle and the bluff body. Two- and three-dimensional bodies were investigated in turbulent flow fields. The research was focused on the cases of the rectangular-section obstacle. Four values of the obstacle size were studied, namely: 4%, 10%, 35%, and 100% of the size of the bluff body. The effect of the obstacle on the thermal field of the two-dimensional body was also studied. Comparisons were carried out with the available experimental measurements. A proposed neuro-fuzzy approach was used to predict the drag reduction of the entire system. Results showed that system drag reductions up to 62% (two-dimensional flows) and 48% (three-dimensional flows) can be obtained. Also, enhancement of the body cooling up to 75% (two-dimensional flows) may be achieved. Generally, useful comments and suggestions are stated.

Copyright © 2006 by ASME
Topics: Flow (Dynamics)



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In