Full Content is available to subscribers

Subscribe/Learn More  >

A Co-Robotic Positioning Device for Carrying Surgical End-Effectors

[+] Author Affiliations
Silvia Frumento, Rinaldo C. Michelini

University of Genova, Genova, Italy

Rainer Konietschke, Ulrich Hagn, Tobias Ortmaier, Gerd Hirzinger

German Aerospace Center, Weßling, Germany

Paper No. ESDA2006-95308, pp. 477-486; 10 pages
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems, Bioengineering and Biomedical Technology, Fluids Engineering, Maintenance Engineering and Non-Destructive Evaluation, and Nanotechnology
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4249-5 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME


The development of a remotely operated, Co-Robotic Positioning Device (CRPD) for instrumental backing and optimal base position to robotic arms in tele-surgery is discussed. To optimise the setting of robotic operating rooms (ROR) by reducing the structures’ size around the patient and by selecting task-driven layouts, the design of a hanging servo-carrier coming from the ceiling is chosen, rather than a device located on the floor. The present study prospects a split-duty approach, distinguishing the Co-Robotic Positioning Device, CRPD, from the front-end effectors, each subsystem hierarchically controlled by remote location, in keeping with optimal protocols. The attention is focused on the slave-carrier, to establish an optimal design of the CRPD, based on the characteristics of robotic effectors and the surgical task. The CRPD is conceived to support (up to four) robotic effectors, each one equipped with proper tools (endoscope, scalpels, scissors, suture needles, etc.). The CRPD, actually, by optimally positioning the robotic arms, avoids the need of manual deployment, in current setups often necessary to avoid singularities or collisions. The Automatic Changing Device for Surgical Tools, ACD-ST, is another significant device of the conceived slave-carrier. It allows the tele-operating surgeon to change the tools (scalpels, scissors, etc.) by a direct command from his console. Example applications aim at ticklish endoscopic/tomic operations that require high accuracy with low involved forces such as cardio-thoracic-surgery, abdominal surgery, spine-surgery, microsurgery (neurosurgery, hand-surgery, ophthalmic-surgery, ear-nose-throat surgery), say, the typical domains of MIRS, where robotic surgery is quickly expanding.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In