0

Full Content is available to subscribers

Subscribe/Learn More  >

Efficient Time-Domain Simulation of Side-By-Side Moored Vessels Advancing in Waves

[+] Author Affiliations
A. S. Murthy Chitrapu, Theodore G. Mordfin, Henry M. Chance

CSC/Advanced Marine Center, Washington, D.C.

Paper No. OMAE2007-29749, pp. 871-879; 9 pages
doi:10.1115/OMAE2007-29749
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 4: Materials Technology; Ocean Engineering
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4270-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

Evaluation of hydrodynamic performance of two vessels in close proximity that are either stationary or advancing in waves is of paramount importance for many offshore and naval engineering applications. Hydrodynamic interactions between the vessels combined with nonlinear mechanical interactions due to mooring and fendering systems make the problem more complicated. An efficient time-domain method is presented for evaluating the seakeeping and maneuvering performance of proximate vessels advancing with forward speed. The method computes the 6 degree-of-freedom motions of a pair of hydrodynamically interacting vessels subject to wind, waves, currents and maneuvering effects at zero and nonzero speeds in regular or random seaways. Model tests conducted to validate the method are described and results presented. The validation efforts conducted so far have yielded satisfactory comparisons, thereby reinforcing the confidence in the method and its applicability to such problems. The method has been used to predict safe operational limits of two vessels in skin-to-skin operations conducted by the US Navy. A similar analysis is presented herein for a different pair of vessels. Since it is based on time domain simulation, this method also allows the inclusion of non-linear effects due to mooring lines, fenders and effects of viscous roll damping, which is not possible with two-body hydrodynamic interaction solutions in frequency-domain. It is concluded that this method provides an efficient tool to predict the performance of hydrodynamically interacting vessels that are stationary or moving with forward speed. To date, it has proven very useful in the early stages of the design/concept development process in which many configurations are evaluated.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In