0

Full Content is available to subscribers

Subscribe/Learn More  >

Tensegrity Structures in the Design of Flexible Structures for Offshore Aquaculture

[+] Author Affiliations
O̸sten Jensen, Pål Furset Lader, Arne Fredheim, Mats Heide, Vegar Johansen

SINTEF Fisheries and Aquaculture AS, Trondheim, Norway

Anders Sunde Wroldsen

Marine Technology Centre, Trondheim, Norway

Paper No. OMAE2007-29735, pp. 843-850; 8 pages
doi:10.1115/OMAE2007-29735
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 4: Materials Technology; Ocean Engineering
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4270-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

Aquaculture is the fastest growing food producing sector in the world. Considerable interest exists in developing open ocean aquaculture in response to a shortage of suitable, sheltered inshore locations. The harsh weather conditions experienced offshore lead to a focus on new structure concepts, remote monitoring and a higher degree of automation in order to keep the cost of structures and operations within an economically viable range. This paper proposes tensegrity structures in the design of flexible structures for offshore aquaculture. The finite element analysis program ABAQUS™ has been used to investigate stiffness properties and performance of tensegrity structures when subjected to various forced deformations and hydrodynamic load conditions. The suggested concept, the tensegrity beam, shows promising stiffness properties in tension, compression and bending, which are relevant for development of open ocean aquaculture construction for high energy environments. When designing a tensegrity beam, both pre-stress and spring stiffness should be considered to ensure the desired structural properties. A large strength to mass ratio and promising properties with respect to control of geometry, stiffness and vibration could make tensegrity an enabling technology for future developments.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In