0

Full Content is available to subscribers

Subscribe/Learn More  >

A Semi-Physical Model of a Hydraulic Power Steering System for Vehicle Dynamics Simulations

[+] Author Affiliations
Federico Cheli, Elisabetta Leo, Edoardo Sabbioni, Andrea Zuin

Politecnico di Milano, Milano, Italy

Paper No. ESDA2006-95591, pp. 321-329; 9 pages
doi:10.1115/ESDA2006-95591
From:
  • ASME 8th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems, Bioengineering and Biomedical Technology, Fluids Engineering, Maintenance Engineering and Non-Destructive Evaluation, and Nanotechnology
  • Torino, Italy, July 4–7, 2006
  • ISBN: 0-7918-4249-5 | eISBN: 0-7918-3779-3
  • Copyright © 2006 by ASME

abstract

A semi-physical model of an hydraulic power steering system is presented in this paper. The proposed model allows to evaluate the wheels dynamic response to steering inputs and to calculate the corresponding reaction torque on the steering-wheel (steering torque). The analyzed steering system increases its stiffness (so that the steering assist level is decreases) with the rise of the vehicle speed. Thus, vehicle maneuverability is improved during parking maneuvers, while at high vehicle speeds, stability and driver perceived steering feel are ensured. A two d.o.f. (steering-wheel and rack-pinion rotations) model has been implemented during this study. The model parameters have been identified through the standard laboratory tests carried out to characterize a steering system, minimizing the difference between the experimental data and the model numerical results. During laboratory tests the hydraulic power system has been characterized first, measuring its stiffness variation as a function of the relative rotation between the steering-wheel and the rack-pinion, and the steering torque as a function of the difference between the delivery and the reversal pressure of the double-acting ram. The complete steering system has been then characterized, suspending the vehicle and placing the wheels on appropriate low-friction plates which permit them to turn; sine and frequency sweep steering input have been applied by a robot and the corresponding reaction torque on the steering-wheel has been measured. Simulations results are in good agreement with the experimental ones for all the performed tests. The steering system model has been integrated into a 14 d.o.f. vehicle model developed by the Mechanical Department of the Politecnico di Milano in order to access its reliability during handling maneuvers. Several simulations have been performed both in open (step-steer, steering pad, etc.) and in closed loop (lane change, double lane change, slalom, etc). Simulation results have shown a reduction of the toe angle due to the deformability of the steering system and a time delay of the wheel angle respect to the cinematic condition introduced by the steering system dynamics. The reaction torque on the steering-wheel has also been calculated during the simulations to access the driver perceived steering feel during the maneuvers.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In