0

Full Content is available to subscribers

Subscribe/Learn More  >

A Coupled-Mode Technique for the Prediction of Wave-Induced Set-Up and Mean Flow in Variable Bathymetry Domains

[+] Author Affiliations
K. A. Belibassakis, Th. P. Gerostathis

Technological Educational Institute of Athens, Athens, Greece

G. A. Athanassoulis

National Technical University of Athens, Athens, Greece

Paper No. OMAE2007-29365, pp. 589-596; 8 pages
doi:10.1115/OMAE2007-29365
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 4: Materials Technology; Ocean Engineering
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4270-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

In the present work, a complete, phase-resolving wave model is coupled with an iterative solver of the mean-flow equations in intermediate and shallow water depth, permitting an accurate calculation of wave set-up and wave-induced current in intermediate and shallow water environment with possibly steep bathymetric variations. The wave model is based on the consistent coupled-mode system of equations, developed by Athanassoulis & Belibassakis (1999) for the propagation of water waves in variable bathymetry regions. This model improves the predictions of the mild-slope equation, permitting the treatment of wave propagation in regions with steep bottom slope and/or large curvature. In addition, it supports the consistent calculation of wave velocity up to and including the bottom boundary. The above wave model has been further extended to include the effects of bottom friction and wave breaking, which are important factors for the calculation of radiation stresses on decreasing depth. The latter have been used as forcing terms to the mean flow equations in order to predict wave-induced set up and mean flow in open and closed domains. Numerical results obtained by the present model are presented and compared with predictions obtained by the mild-slope approximation (Massel & Gourlay 2000), and experimental data (Gourlay 1996).

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In