0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer in Water-Cooled Silicon Carbide Milli-Channel Heat Sinks for High Power Electronic Applications

[+] Author Affiliations
C. Bower, A. Orgega, P. Skandakumaran

University of Arizona, Tucson, AZ

R. Vaidyanathan, T. Phillips

Advanced Ceramics Research, Inc., Tucson, AZ

Paper No. IMECE2003-43374, pp. 327-335; 9 pages
doi:10.1115/IMECE2003-43374
From:
  • ASME 2003 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 2
  • Washington, DC, USA, November 15–21, 2003
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3718-1 | eISBN: 0-7918-4663-6, 0-7918-4664-4, 0-7918-4665-2
  • Copyright © 2003 by ASME

abstract

Heat transfer and fluid flow in a novel class of water-cooled milli-channel heat sinks are investigated. The heat sinks are manufactured using an extrusion freeform fabrication (EFF) rapid prototyping technology and a water-soluble polymer material. EFF permits the fabrication of geometrically complex, three-dimensional structures in non-traditional materials. Silicon carbide, SiC, is TEC-matched to silicon and is an ideal material for heat exchangers that will be mounted directly to heat dissipating electronic packages. This paper presents experimental results on the heat transfer and flow in small SiC heat exchangers with multiple rows of parallel channels oriented in the flow direction. Rectangular heat exchangers with 3.2 cm × 2.2 cm planform area and varying thickness, porosity, number of channels, and channel diameter were fabricated and tested. Overall heat transfer and pressure drop coefficients in single-phase flow regimes are presented and analyzed. The per channel Reynolds number places the friction coefficients in the developing to developed hydrodynamic regime, and showed excellent agreement with laminar theory. The overall heat transfer coefficients for a single row SiC heat exchanger compared favorably with a validation heat exchanger fabricated from copper, however the heat transfer coefficient in multiple row heat sinks did not agree well with the laminar theory.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In