0

Full Content is available to subscribers

Subscribe/Learn More  >

Material Challenges in Arctic Areas

[+] Author Affiliations
Agnes Marie Horn

Det Norske Veritas, Baerum, Norway

Per Egil Kvaale, Mons Hauge

Statoil, Stavanger, Norway

Paper No. OMAE2007-29579, pp. 209-216; 8 pages
doi:10.1115/OMAE2007-29579
From:
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 4: Materials Technology; Ocean Engineering
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4270-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME

abstract

There is a lack of rules and standards that provide guidelines for material selection and qualification of materials for offshore and onshore structures in arctic areas. Many current standards for low temperature applications such as cryogenic piping and process systems do not reflect the need for low-cost bulk materials for large volume applications such as pipelines and production facilities. The growing focus on oil and gas exploration in arctic areas has raised the need for new standards and industry practice that supports cost effective and safe installation and operation of production and transport facilities in the cold climate. There are materials today that are applicable for low temperature conditions. The grades are often highly alloyed (typically 3–9% Ni) with good toughness properties, but these alloys are expensive compared to conventional steel material grades. Such materials may not be applicable in pipelines, structures and process plants. This challenge can be met in two ways. First, structural steels that are capable of being welded and operated in the cold climate should be developed and qualified. Second, materials for forged and casted components that can be welded to the structural steels should be developed and qualified to fit into the integrated structure or pipeline system. Some actions have been taken to develop new standards e.g. within ISO19906, and actions are being taken in Russia to harmonize their specifications with the international standards, but this is a comprehensive job and the work must be executed in parallel with the development of new steels and welding technology.

Copyright © 2007 by ASME
Topics: Arctic region

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In