Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Constraint on Fatigue Crack Propagation in T-Plate Welded Joints

[+] Author Affiliations
Xin Wang

Carleton University, Ottawa, ON, Canada

Qing Gao

Southwest Jiaotong University, Chengdu, Sichuan, China

Paper No. OMAE2007-29197, pp. 67-72; 6 pages
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 4: Materials Technology; Ocean Engineering
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4270-3 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by ASME


It has been observed that the loss of crack tip constraint leads to enhanced resistance to both cleavage and ductile tearing. Recent developments on constraint-based fracture mechanics have enabled the practical assessment of defective components including the constraint effect. However, how to quantify the effect of crack tip constraint on the fatigue crack propagation rate is still an open issue. It is common practice to use the Paris crack propagation law, which is based on the stress intensity factor alone. In this paper, the effect of crack tip constraint on the fatigue crack propagation of small cracks at T-plate welded joints is investigated. A fatigue crack propagation rate model is developed incorporating both low and high constraint conditions. It is shown that the effect of constraint on crack propagation rate is significant when the crack is small (within the stress concentration of the weld joints). This effect can be accounted for by using the proposed fatigue crack propagation rate model.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In