Full Content is available to subscribers

Subscribe/Learn More  >

Laboratory Simulation of Drill Bit Dynamics Using a Model-Based Servo-Hydraulic Controller

[+] Author Affiliations
David W. Raymond, Yarom Polsky, Scott S. Kuszmaul

Sandia National Laboratories, Albuquerque, NM

M. A. Elsayed

University of Louisiana at Lafayette, Lafayette, LA

Paper No. OMAE2007-29706, pp. 905-914; 10 pages
  • ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 2: Structures, Safety and Reliability; Petroleum Technology Symposium
  • San Diego, California, USA, June 10–15, 2007
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4268-1 | eISBN: 0-7918-3799-8
  • Copyright © 2007 by Sandia Corporation and ASME


Drilling costs are significantly influenced by bit performance when drilling in off-shore formations. Retrieving and replacing damaged downhole tools is an extraordinarily expensive and time-intensive process, easily costing several hundred thousand dollars of off-shore rig time plus the cost of damaged components. Dynamic behavior of the drillstring can be particularly problematic when drilling high strength rock where the risk of bit failure increases dramatically. Many of these dysfunctions arise due to the interaction between the forces developed at the bit-rock interface and the modes of vibration of the drillstring. Although existing testing facilities are adequate for characterizing bit performance in various formations and operating conditions, they lack the necessary drillstring attributes to characterize the interaction between the bit and the bottom hole assembly (BHA). A facility that includes drillstring compliance and yet allows real rock/bit interaction would provide an advanced, practical understanding of the influence of drillstring dynamics on bit life and performance. Such a facility can be used to develop new bit designs and cutter materials, qualify downhole component reliability, and thus mitigate the harmful effects of vibration. It can also serve as a platform for investigating process-related parameters which influence drilling performance and bit-induced vibration to develop improved practices for drilling operators. Sandia National Laboratories is pursuing the development of an advanced laboratory simulation capability which allows the dynamic properties of a BHA to be reproduced in the laboratory. This simulated BHA is used to support an actual drill bit while conducting drilling tests in representative rocks in the laboratory. The advanced system can be used to model the response of more complex representations of a drillstring with multiple modes of vibration. Application of the system to field drilling data is also addressed.

Copyright © 2007 by Sandia Corporation and ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In